KNX-223

CONTENTS

1.1. PARAMETER WINDOW "GENERAL" .. 2
1.2. INDEPENDENT WORKING MODE... 2
1.2.1. "SWITCHING".. 2

1.2.3. "BLIND" ... 3
1.2.4. "VALUE SENDER" .. 4
1.2.5. "SCENE"
1.2.6. ""STEP-TYPE SWITCH"
1.2.7. "SHORT-LONG OPERATION"

N" .. 4
1.2.8. "RTC OPERATION MODE"
.... 5 6
1.2.9. "MULTIPLE OPERATION" .. 6
1.3. LINKED WORKING MODE .. 7
1.3.1. "RTC OPERATION MODE"... 7
1.3.2. "DIMMING".. 7
1.3.3. "BLIND".
.... 8
1.3.3. "VALUE SENDER"
.... 8

1.3.6. "STEP-TYPE SWITCH" .. 9
1.4. "LED FUNCTION" .. 10
2.1. INDEPENDENT WORKING MODE COMMUNICATION OBJECTS.................. 11
2.1.1. "DISABLE FUNCTION" COMMUNICATION OBJECT...
2.1.2. "SWITCHING" COMMUNICATION OBJECT.. 11
2.1.3. "DIMMING" COMMUNICATION OBJECT .. 11
2.1.4. "BLIND" COMMUNICATION OBJECT.. 11
2.1.5. "VALUE SENDER" COMMUNICATION OBJECT ... 11
21.6. "SCENE" COMMUNICATION OBJECT 12
2.1.7. "STEP-TYPE SWITCH" COMMUNICATION OBJECT... 12
2.1.8. "SHORT-LONG OPERATION" COMMUNICATION OBJECT .. 12
2.1.9. "RTC" COMMUNICATION OBJECT ... 12
2.1.10. "MULTIPLE OPERATION" COMMUNICATION OBJECT... 13
2.2. LINKED WORKING MODE COMMUNICATION OBJECT 13
2.2.1. "DISABLE FUNCTION" COMMUNICATION OBJECT ... 13
2.2.2. "SWITCHING" COMMUNICATION OBJECT ... 13
2.2.3. "DIMMING" COMMUNICATION OBJECT... 13
2.2.4. "BLIND" COMMUNICATION OBJECT ... 13
2.2.5. "VALUE SENDER" COMMUNICATION OBJECT.. 14
2.2.6. "VALUE DIMMING" COMMUNICATION OBJECT .. 14
2.2.7. "STEP-TYPE SWITCH" COMMUNICATION OBJECT .. 14
2.3. "LED FUNCTION" COMMUNICATION OBJECT .. 14

A RLIGHT

1. PARAMETER SETTING DESCRIPTION IN THE ETS

1.1. PARAMETER WINDOW "GENERAL"

Parameter window "General setting" can be shown in fig. 1.1. There used to set the working mode for each rocker switch, the rocker switch can be used as two independent push button or linked push button. If the rocker switch is used as two independent push button, the application is independent each other for the two independent. If as linked push button, the application is associated.
"Startup time in second"
This parameter is used to set the startup time of device. Options: $1 . . .60$
Devicer 1.13 KNos51-kxX Push-button 4 gang

Figure 1.1. Parameter window "General"

'Read LEDs at power up'

This parameter can decide whether read LED when power on. Options: YES/NO

"Button number of device"

This parameter is used to set the number of device.
"Button 1-2/3-4 use"
This parameter is used to set the working mode for each ro cker switch.

Options: 2 independent push buttons

Linked push button
If selecting " 2 independent push buttons", the left and right side of the rocker switch are used as two independent push buttons, and the application does not differentiate between whether the rocker switch is operated on the left and right side.
If selecting "linked push button", the left and right side of the rocker switch are used as linked push button, and the application differentiates between whether the rocker switch is operated on t he left and right side.
The following sections details parameters and communication objects of each application in the two working modes, using one push button or one rocker switch as an example.

1.2. INDEPENDENT WORKING MODE

In the independent working mode, the applications do not differentiate between whether the rocker switch is operated on the left and right side. In each case, the applications make a separate set of parameters and communication objects available for the light and left side of the rocker switch. For example, a switching function can be realized via a rocker switch side while the other rocker switch side can be assigned with an additional "button orientated" function.

1.2.1. "SWITCHING"

Parameter window "Switching" can be shown in fig. 1.2. With the application, a switching telegram is sent out for an operation or upon release of the rocker switch.

Figure 1.2. "Switching" window

"Reaction on rising edge"/"Reaction on falling edge"

Via the parameters you can set which 1 bit value is sent out for e very operation on rising edge and falling edge. This can be an ON telegram, an OFF telegram or a toggle telegram. Alternatively, no telegram can be sent out for a rocker switch operation using the No reaction setting.

Options:	No reaction
	On
	Off
	Alternating on/off

"Alternating on/off" means that switching is always between ON and OFF. For example, if an ON telegram was last sent out, then a renewed operation of the rocker switch will trigger an OFF telegram. When the rocker switch is operated again, an ON telegram is sent out, etc. The rocker switch thus always remembers the last state and then switches over to the other value.

"Switching", 1 bit

According to the parameter setting, the object is used to send out an ON telegram or an OFF telegram, or a tog gle telegram via an operation or the releasing of the rocker switch.

1.2.2. "DIMMING" FUNCTION

Parameter window "Dimming" can be shown in fig. 1.3. With the application, a rocker switch has two communication objects for switching and for dimming A distinction is made between short operation and long operation. A short operation will execute switching; a long operation will execute dimming.
A "switching" switching telegram is sent out on the 1-bit communication object. A "relative dimming" dimming telegram is sent out on the 4 -bit communication object.

Device: -*. KN9550-KXX Push-button 4-gang			
General	Choice of function	Dimming	-
Button 1			
Buttan2		4	8
Button3	(3.30)		
Buttona		deactivated	-
Button5	switching	desctivated	-
Button7	Working mode of the button for	darker	-
Buttons	dimming		
LEDI	Step size for dimming	1/4	-
LED2			
LED3	Dimming stop telegram	Dimming stop is not sent	\checkmark
LED4			
LED6	Cyclical sending of dimming telegrams	deactivated	\bullet
LEDS			
LED7			
LEDE			

Figure 1.3. "Dimming" window
"Duration of long operation=entry×0.1s" (3...30)
The parameter is used to define the time which a long operation is recognized.
Options: 3~30

"Working mode of the push button for switching"

This parameter is used to determine whether a s hort operation sends out an ON or an OFF telegram via a 1 bit communication object. Alternatively, for the selection "alternating on/off", you can switch between switching on and switching off for every short operation, i.e. after a switch-on telegram has been sent out (or received), a switch off telegram will be sent out for a renewed operation. After it is operated again, a switching-on telegram is sent out.

Options: Deactivated
Off
On
Alternating on/off

"Working mode of the push button for dimming"

This parameter is used to determine whether a long operation sends out a dim brighter or a dim darker telegram via a 4 bit communication object Alternatively, for the selection "alternating brighter/darker", you can switch between dimming up and dimming darker for every long operation, i.e. after a dim brighter telegram has been sent out (or received), a dim darker telegram will be sent out for a renewed operation. After it is operated again, a dim brighter telegram is sent out.

Options: Darke
Bright
Alternating brighter / darker

"Step size for dimming"

The parameter is used to specify by how much brighter or darker dimming should occur. The sent out value always relates to the current brightness value. For example, a dimming actuator is currently dimmed to a brightness value of

A R L I G H T
70%. By operation of the rocker switch, a dimming command "dim by $25 \%(1 / 4)$ brighter" is sent out. The dimming actuator will adjust its brightness value to 95% immediately after receiving the dimming command.

$$
\text { Options: } \quad 1 / 1,1 / 2,1 / 4,1 / 32,1 / 64
$$

"Dimming stop telegram"

The parameter is used to determine whether the release of the rocker switch will trigger the "dimming stop" command or not.

$$
\begin{array}{ll}
\text { Options: } & \text { Dimming stop is send } \\
\text { Dimming stop is not send }
\end{array}
$$

With the "dimming stop is send" option, when the rocker switch is released, the telegram with the "dimming stop" information is sent out on the 4 -bit communication object "relative dimming".

"Cyclical sending of dimming telegrams"

The parameter is used to determine the telegram with the "brighter" or "darker" information whether is sent out cyclically by a durative long operation.

$$
\begin{array}{ll}
\text { Options: } & \text { Deactivated } \\
& \text { Activated }
\end{array}
$$

With the "deactivated" option, when triggered a durative long operation, only one telegram with the "brighter" or "darker" information is sent out on the 4-bit communication object "relative dimming".
With the "activated" option, when triggered a durative long operation, the telegram with the "brighter" or "darker" information is sent out cyclically on the 4 -bit communication object "relative dimming".
"Duration of the telegram repetitions=entry $\times 0.1 \mathrm{~s}(3 . . .30)$ "
The parameter is only visible if the "cyclical sending of dimming telegrams" parameter is set to "activated". It is used to set the interval time between two telegrams that are sent cyclically.

$$
\text { Options: } \quad 3 \ldots 30 .
$$

"Switching", 1bit
According to the parameter setting, the object is used to send out an ON telegram or an OFF telegram, or a toggle telegram via a short operation of the rocker switch.

"Relative dimming", 4bit

According to the parameter setting, the object is used to send out a dim brighter or a dim darker telegram via a long operation of the rocker switch. When the rocker switch is released, it is possible that a dim stop telegram is sent out via the object.

1.2.3. "BLIND"

Parameter window "blind" can be shown in fig. 1.4. With the application, a push button has two functions to be realized: shutter and roller blind. In the case of shutter, an operation of the rocker switch sends out a blind movement command or a slats adjustment command. A short operation always triggers a travel command and a long operation always triggers a slats adjustment command. You can specify whether the shutter control occurs via two 1-bit or two 1 -byte communication objects "travel" and "adjust". If the communication object "adjust" is selected to 1-bit, the slats adjustment command can be sent out cyclically. In the case of roller blind, a short operation triggers a travel command and a long operation trigger a stop command, the blind control occurs via two 1-bit communication objects "travel" and "stop".

Device: 1.1.3 KN9551-KXX Push-button 4-gang			
General	Choise of function	Blind	-
Button 1			
Button2	Operation function	long trave//short - stop/acjust	-
Button pair2			
Button pair3	Function switchover blinds/roller shutters	Shutter	\checkmark
Button pair4			
LED1	Duration of long operation=entry'0.1s(3.30)	10	Q
LED3			
	Object type	1 bit	-
LED4			-
LeDS	Cycle time of the telegram repetition $=$ entry ${ }^{*} 0.1 s(3.30)$	4	者
LED6			\square
LED7			
Leds			
	Figure 1.4. "Blind" win	dow	

"Operation function"

The parameter is used to define the operation mode of long and short option.
Options: long=travel/short=stop/adjust
short=travel/long=stop/adjust
"Duration of long operation=entry $\times 0.1 \mathrm{~s}(3 \ldots 30)$ "
The parameter is used to define the time which a long operation is recognized.

$$
\text { Options: } \quad 3 \ldots 30
$$

"Cycle time of the telegram repetition= entry $\times 0.1 \mathrm{~s}(3 . . .30)$ "

The parameter is only visible if the "object type" parameter is set to " 1 bit ". It is used to set the interval time between two telegrams that are sent cyclically for a durative long operation.

$$
\text { Options: } \quad 3 . .30
$$

"Object type"

This parameter is only visible if the "function switchover blinds/roller shutter" parameter is set to "shutter". It is used to define the type of the communication objects "travel" and "adjust".

Options: 1 bit 1 byte

"Function switchover roller blind / shutter"

The parameter is used to determine whether a roller blind or shutter is to be driven by a operation. With the "roller blind" setting, the value for the slats adjustment does not apply.

Options: Shutter

Roller blind
"Value for position down (\%)" / "value for position up (\%)"
This parameter can only be set if "1 byte" has been set as object type, which can be used to set the position (percent values) tha t a connected blind shall be lowered or raised to.

$$
\text { Options: } \quad 0 . . .100
$$

The value 0\% means travel up completely, the value 100\% means travel down completely.
"Value for stats position down (\%)" / "value for stats position up (\%)"
This parameter can only be set if "1 byte" has been set as object type, which can be used to set the position (percent values) that a connected blind slat shall be opened or closed to.

$$
\text { Options: } 0 . . .100
$$

The value 0\% means slat opened completely, the value 100% means closed completely.

"Travel", 1bit (shutter)

This object is visible if the parameter "object type" is set to "1bit", it is used to send out a shutter movement command (UP or DOWN) on the bus via a short operation of the left or the right side of the rocker switch.

$$
\begin{array}{ll}
\text { Telegram value } & \text { "0" UP } \\
& \text { "1" DOWN }
\end{array}
$$

"Adjust", 1bit (shutter)

This object is visible if the parameter "object type" is set to "1bit", it is used to send out a lamella adjustment command (UP or DOWN) on the bus via a long operation of the left or the right side of the rocker switch.

$$
\begin{array}{ll}
\text { Telegram value } & \text { "0" lamella UP } \\
& 1 " \text { lamella DOWN }
\end{array}
$$

"Travel", 1byte (shutter)

This object is visible if the parameter "object type" is set to "1byte", it is used to send out a shutter movement command (UP or DOWN, percent values) on the bus via a short operation of the left or the right side of the rocker switch.

$$
\text { Telegram value } \quad 0 . .100 ", 0 \text { travel up completely }
$$

"100" travel down completely

"Adjust", 1byte (shutter)

This object is visible if the parameter "object type" is set to "1byte", it is used to send out a stats adjustment command (UP or DOWN, percent values) on the bus via a long operation of the left or the right side of the rocker switch.

$$
\begin{array}{ll}
\text { Telegram value } & \text { "0...100", } 0 \text { stat opened completely } \\
& \text { "100" stat closed completely }
\end{array}
$$

"Travel", 1bit (roller blind)

This object is visible if the parameter "function switchover roller blind / shutter" is set to "roller blind", it is used to send out a roller blind movement command (UP or DOWN) on the bus via a short operation of the rocker switch.

$$
\begin{array}{ll}
\text { Telegram value } & \text { "0" UP } \\
& \text { "1" DOWN }
\end{array}
$$

ARLIGH

"Stop", 1bit (roller blind)

This object is visible if the parameter "function switchover roller blind / shutter" is set to "roller blind", it is used to send out a roller blind stop telegram on the bus via a long operation of the rocker switch.

$$
\text { Telegram value } \quad \text { " } 0 \text { " or " } 1 \text { " stop }
$$

1.2.4. "VALUE SENDER"

Parameter window "value sender" can be shown in fig. 1.5. With the application, two telegrams with the predefined values from two different communication objects can be sent out for an operation or upon release of the rocker switch.

Device: KN9550-KXX Push button 4 -gang			
General	Choice of function	Value sender	
Button1			
Button2	Object type for rising edge	1 bit	-
Button 3			
Button4	Reaction on rising edge	no rosction	\square
Buttons			
Button6	Object type for falling edge	1 bit	-
Button7	Reaction on falling edge	no reaction	-
Button8			
LEOL			
LED2			
LED3			
LECM			
LEDS			
LEDS			
LED7			
LED8			

Figure 1.5. "Value sender" window
"Object type for rising edge" / "object type for falling edge"
The parameters are used to define the data types that are sent when the rocker switch is actuated for an operation and the release. The data types specified the bit size of the communication objects and the value range.

Options: 1bit
1byte 0...100\%
1byte $1 . . .255$
2byte signed -32768... 32767
2byte unsigned 0... 65535
2 byte float
4byte signed -2147483648...2147483647
4 byte unsigned 0... 4294967295

"Reaction on rising edge" / "reaction on falling edge"

The parameters are used to determine whether an operation and the release of the rocker switch send out the "value 1 " or "value 2 ".

Options:	No reaction
	Value 1
	Value 2
	Alternating value $1 /$ value 2

"Value1 for rising edge" / "value2 for rising edge"

The parameters are used to specify value1 and value 2 which are sent out for an operation of the rocker switch. The values range is dependent on the selected data types

"Value1 for falling edge" / "value2 for falling edge"

The parameters are used to specify value1 and value2 which are sent out for the release of the rocker switch. The values range is depend ent on the selected data type.

"Switching (rising edge)", 1bit/1byte/2byte/4byte

The type of the object is set in the parameter "object type for rising edge", the object is used to send out a telegram with the predefined value for an operation of the rocker switch switch.

"Switching (falling edge)", 1bit/1byte/2byte/4byte

The type of the object is set in the parameter "object type for falling edge", the object is used to send out a telegram with the predefined value for the release of the rocker switch switch.

1.2.5. "SCENE"

Parameter window "Scene" can be shown in fig. 1.6. With the application, a predefined light scene number can be called for an operation of the rocker switch. The user has the option to trigger a light scene storage command via a long operation

"Storage function light scenes"

It is used to set whether the light scene storage function is enabled

General	Choice of function	Seerne	\checkmark
Button 1			*
Button2	Storage function light stenes	deactivated	-
Button4	Number of scene(1...64)	1	\square
Button5			0
Buttont			
Button7			
Buttong			
LED1			
LED2			
LED3			
LED4			
LED6			
LeDS			
LED7			
LEDO			
	Figure 1.6. "Scene" window		
	Deactivated		
	Activated		

With the setting "activated", the user has the option of sending out a light scene storage command via a long operation. The same 1-byte communication object that is used for this can also call up the light scene number via a short operation.
"Duration of long operation= entry×0.1s" (3...100)"
The parameter is only visible if the "storage function light scenes" parameter is set to "activated". It is used to define the time which a long operation is recognized.

Options:
3... 100

"Number of light scene (1...64)"
The parameter is u sed to set an arbitrary light scene number from 1 to 64 which can be sent out via the 1-byte communication object "light scene number" for operation of the rocker switch.

"Number of light scene", 1byte

The object is used to send out a scene number and the information as to whether a scene should be recalled or the current scene should be stored. The number of light scene is set in the parameter "Number of light scene".

Telegram code 8 bit:	FXNNNNNN
F:	$0-$ Scene is recalled
	$1-$ Scene is stored
X:	Not used
NNNNNN:	Number of the scene (0...63)

1-64 in the parameter setup corresponds to the scene number $0-63$ sent by the communication object "Number of light scene". For example, scene 1 in the parameter setup has the same output result as scene 0 in the communication object "Number of light scene".

1.2.6. ""STEP-TYPE SWITCH"

Parameter "step-type switch" can be shown in fig. 1.7. With the application, the user can trigger different switching processed with each new operation of the rocker switch. Up to four switching levels can be activated.
A short and long operation can be differentiated between for the operation of the rocker switch. For a short operation of the rocker switch, a next level forward is switched to in each case. For a long operation, the first level is activated. Thus a long operation can jump back from every position to the first level without having to run through the remaining levels.

"Number of objects"

The parameter is used to specify the number of the levels. Up to four levels can be switched.
For every level, its own 1-bit communication object is available.
Options: 1... 4

Figure 1.7. "Step-type switch" window

ARLIGHT
"Evaluation period=entry×0.1s" (10...50)"
The parameter is used to set the evaluation period, i.e. the period of time in which complete the first object to the final object sending out via a multiple operation, up to four objects can be sent.

$$
\text { Options: } \quad 10 \ldots 50
$$

"Duration of long operation=entry $\times 0.1 \mathrm{~s}(3 . . .50)$ "
The parameter is used to define the time whic h a long operation is recognized and switched back to the first level.

$$
\text { Options: } \quad 3 . . .50
$$

"Sending of objects"

The parameter is used to specify whether the object values for every rocker switch operation are sent out or only if the object values have changed since the last sending out.

Options: For operation

For change of value

The three objects as an example to illustrate the difference between two options (Send normally object values, bit pattern of the object values is x of n):

Operations	Binary code	Objects			
	000	Stage3	Stage2	Stage1	
1	001	Off	Off	Off	
2	011	Off	Off	On	
3	111	Off	On	On	
4	111	On	On	On	
$\ldots \ldots .$.	On	On	On		
	$\ldots \ldots .$.	\ldots	\ldots	$\ldots .$.	

With the setting "for operation", the three object values are sent out for every operation. Such as the above table from the 1st to the 2nd operation, stage 1 object sends the value of 1 , for a while stage 2 object will send the value of 1 , finally, stage 3 object will send the value of 0 . The total time that the three objects are sent out can be set in the parameter "Evaluation period= entry $\times \mathbf{0 . 1 s}$ ".
With the setting "for change of value", only the object that values have changed compared with the last values is sent out for every operation. Such as the above table from the 1st to the 2nd operation, only stage 2 object value has changed, so only stage 2 object sends the value of 1 .
If the rocker switch is a long operation, the operation is switched back to the initial state.

"Object values"

The parameter is used to define whether the object values are sent out "invert" or "normal" via their associated 1-bit communication objects.

Options: Normal Inverse

With the setting "normal", all 1-bit communication objects of the individual levels sent out their values normal.
With the setting "inverse", all 1-bit communication objects of the individual levels sent out their values inverted.
The three objects as an example to illustrate the difference between two options, their object values are just opposite. As follows:

Operations	Normal				Inverse			
	Binary code	Objects			Binary code	Objects		
		Stage3	Stage2	Stage 1		Stage3	Stage2	Stage 1
0	000	Off	Off	Off	111	On	On	On
1	001	Off	Off	On	110	On	On	Off
2	011	Off	On	On	100	On	Off	Off
3	111	On	On	On	000	Off	Off	Off
4	111	On	On	On	000	Off	Off	Off
....	\ldots	\ldots	\ldots	\ldots	

"Bit pattern of object values"

The parameter is used to determine the way of bit pattern of object values.

$$
\text { Options: } \quad \mathrm{x} \text { of } \mathrm{n}
$$

$$
1 \text { of } n
$$

The three objects as an example to illustrate their difference, as follows (Send normally object values, $n=3$):
With the setting "x" of " n ", the binary coding sequence of bit pattern of object values is 000-001-011-111. So the object values have changed step by step. With the setting " 1 " of " n ", the binary coding sequence of bit pattern of object values is 000-001-010-100. Only one of the object values is 1 for every operation, and the object values have changed with certain regularity.

Operations	X of n				1 of n			
	Binary code	Objects			Binary code	Objects		
		Stage3	Stage2	Stage 1		Stage3	Stage2	Stage 1
0	000	Off	Off	Off	000	Off	Off	Off
1	001	Off	Off	On	001	Off	Off	On
2	011	Off	On	On	010	Off	On	Off
3	111	On	On	On	100	On	Off	Off
4	111	On	On	On	100	On	Off	Off
\ldots	\cdots	\ldots	\cdots	\cdots	\cdots	\ldots	

"Switching stage1" to "switching stage 4 ", 1bit
The number of these objects (max.4) is set in the parameter "Number of objects". The objects send out the values or some of the values for every new operation of the rocker switch.

1.2.7. "SHORT-LONG OPERATION"

Parameter window "short-long operation" can be shown in fig. 1.8. With the application, a telegram with different predefined values can be sent out for a short or long operation of the rocker switch.

Figure 1.8. "Short-long operation" window

"Object type"

The parameter is used to define the data types that are sent when the rocker switch is actuated via a short or long operation. The data types specified the bit size of the communication objects and the value range.

Options: 1bit
1byte 0... 100%
1byte 1... 255
2byte signed -32768... 32767
2byte unsigned 0... 65535
4byte signed -2147483648... 2147483647
4byte unsigned 0... 4294967295

"Reaction on short operation"

The parameters are used to determine whether the rocker switch sends out the "value1" or "value2" via a short operation.

Options: No reaction

Value 1
Value 2
Alternating value 1 /value 2

"Value $\mathbf{1 / 2}$ for short operation"

The parameters are used to specify value1 and value2 which are sent out for a short operation of the rocker switch. The values range is dependent on the selected data type.

"Reaction on long operation"

The parameters are used to determine whether the rocker switch sends out the "value1" or "value2" via a long operation.

Options: No reaction

Value 1
Value 2
Alternating value $1 /$ value 2

"Value $\mathbf{1 / 2}$ for long operation"

The parameters are used to specify value1 and value2 which are sent out for a long operation of the rocker switch. The values range is dependent on the selected data type.
"Duration of long operation=entry $\times 0.1 \mathrm{~s}(3 . . .30)$ "
The parameter is used to define the time which a long operation is recognized.
Options: $\quad 3 . . .30$

A RLIGHT

"Value for short operation", 1bit/1byte/2byte/4byte

The type of the object is set in the parameter "object type", the object is used to send out a telegram with the predefined value for a short operation of the rocker switch. The predefined value and data types can be freely selected in the parameters.

"Value for long operation", 1bit/1byte/2byte/4byte

The type of the object is set in the parameter "object type", the object is used to send out a telegram with the predefined value for a long operation of the rocker switch. The predefined value and data types can be freely selected in the parameters.

1.2.8. "RTC OPERATION MODE"

Parameter window "RTC operation mode" can be shown in fig. 1.9. With the application, an operation mode switchover for connected room thermostats can be carried out for an operation of a rocker switch side. The application offers two object types for output, one is three 1 -bit communication objects "operating mode comfort", "operating mode night", "operating mode frost", and the other is a 1-byte communication object "operating mode". In the case of 1-byte, different values mean different operation modes, such as $0=a u t 0,1=$ comfort, $2=$ standby, etc.
The function can be temporarily blocked via this 1-bit "enable" communication object.

"Object type for output"

The parameter is used to determine the size of the output communication object for the RTC operation.
Options: 1bit

1byte
The selection "1-bit" is used for control of room thermostats that have "1-bit" communication objects for operating mode switchover.
The selection "1-byte" is used for control of room thermostats that have
"1-byte" communication object for operation mode switchover. In this case, the values mean $0=$ auto, $1=$ comfort, $2=$ standby, $3=$ night, $4=$ frost/heat protection, 5 ... $255=$ not allowed.

"Operating mode"

The parameter is used to specify the operating mode.
Options: Auto
Comfort
Standby
Night
Frost protection, Heat protection
The "auto" mode can only be set if the "object type for output" parameter is set to "1-byte", with the selection of "auto", the value " 0 " is sent out on the 1 byte object. For a connected room thermostat, this means that for every new operation, the individual operating modes "comfort", "standby" and "night" will be switched between.
If the "object type for output" parameter is set to "1-bit" and with the selection of "comfort", the follow "send comfort object" and "sending frost protection" parameters will visible.
If the "object type for output" parameter is set to "1-bit" and with the selection of "standby", the follow send "comfort object", "sending frost protection" and "sending night object" parameters will visible.
If the "object type for output" parameter is set to "1-bit" and with the selection of "night", the follow "send comfort object", "sending frost protection" and "sending night object" parameters will visible.
If the "object type for output" parameter is set to "1byte" the value "1" is sent out on the 1-byte object and a connected room thermostat switches to the comfort operation mode, the value " 2 " is sent out on the 1 -byte object and a connected room thermostat switches to the standby operation mode, the value " 3 " is sent
out on the 1-byte object and a connected room thermostat switches to the nigh operation mode, the value " 4 " is sent out on the 1 -byte object and a connected room thermostat switches to the Frost/Heat protection operation mode.
If the "object type for output" parameter is set to "1bit", when the object "comfort operating mode" sends a telegram "1" on operating switch, and other objects send telegrams " 0 ", right now a connected room thermostat switches to the comfort operation mode; when the object "night operating mode" sends a telegram " 1 " on operating switch, and other objects send telegrams " 0 ", right now a connected room thermostat switches to the night operation mode; when all objects send telegrams " 0 " on operating switch, right now a connected room thermostat switches to the standby operation mode. When the operation mode is set to the Frost/Heat protection operation mode, other operation modes of communication objects and parameters will be not visible.

"Send comfort object"

This parameter will be visible when the parameter "object type for output" is set to "1bit", here set whether the comfort mode is activated.

Options: Deactivated
Activated
When selecting "activated" option, the communication object "comfort operating mode" is enabled.

"Sending frost protection"

This parameter will be visible when the parameter "object type for output" is set to "1bit", here set whether the frost/heat protection mode is activated.

Options: Deactivated
 Activated

When selecting "activated" option, the communication object "frost operating mode" is enabled

"Send night object"

This parameter will be visible when the parameter "object type for output" is set to "1bit", here set whether the night mode is activated.

Options: Deactivated
Activated
When selecting "activated" option, the communication object "night operating mode" is enabled.

"Comfort operating mode", 1bit

This communication is visible if the parameter "send comfort object" is set to "activated". If the object receives an ON telegram, a connected room thermostat switches to the comfort operation mode mode.

"Frost operating mode", 1bit

This communication is visible if the parameter "send frost protection" is set to "activated". If the object receives an ON telegram, a connected room thermostat switches to the frost/heat protection operation mode mode.
"Night operating mode", 1bit
This communication is visible if the parameter "send night object" is set to "activated". If the object receives an ON telegram, a connected room thermostat switches to the night operation mode.
"Operation mode", 1byte
This communication is visible if the parameter "object type for output" is set to "1byte". The object sends out different telegram values, different values mean different operation modes, such as $0=a u t o, 1=c o m f o r t, 2=s t a n d b y, 3=n i g h t, 4=0 r$ Frost protection, Heat protection, values $5 . . .255$ is not allowed.

1.2.9. "MULTIPLE OPERATION"

"Multiple operation" function allows use define some (up to 5) different objects, delay time delay to send, data type.
"Object X type"
This parameter define the data type of object.

> Options: 1bit

1byte 0...100\%
1byte 1... 255
2byte signed
2byte unsigned
2byte float
4byte signed
4 byte unsigned
"Sending value of object X "
This parameter define the value to be sent

ARLIGHT
"Time delay to send for object1 (0...255s)"
This parameter define time delay to send.
Options: 0... 255

Device.... KN9550-kXX Push- button 4 -gang
General
Button1
Button2
Button3
Button4
Button5
Button6
Button7
Button8
LED1

1.3. LINKED WORKING MODE

In the linked working mode, the applications differentiate between whether the rocker switch is operated on the left and right side.

1.3.1. "RTC OPERATION MODE"

Parameter window "switching" can be shown in fig. 1.3. With the "switching" application, an operation of the right or left side of the rocker switch sends out a switching telegram.

Figure 1.10. "Switching" window

"Switching, rocker switch total"

The parameter is used to define whether switching on or switching off occurs via the right or the left side of the rocker switch.

Options: Left on, right off
Left off, right on
Alternating on/off
If the option alternating on/off is selected, switching is always between ON and OFF. That means, for example, if an ON telegram was last sent out, then a renewed operation of the rocker switch will trigger an OFF telegram. When the rocker switch is operated again, an ON telegram is sent out, etc. The rocker switch thus always remembers the last state and then switches over to the other value.

"Switching", 1bit

According to the parameter setting, the object is used to send out an ON telegram or an OFF telegram via an operation of the left or the right side of the rocker switch.

1.3.2. "DIMMING"

Parameter window "Dimming" can be shown in fig. 1.11. With the "dimming" application, an operation of the right or left side of the rocker switch sends out a switching telegram or a dimming telegram. In the case of step-wise dimming, a distinction is made between short and long operation, you can specify whether a short or long operation will execute switching or dimming. A "switching" switching telegram is sent out on the 1 -bit communication object. A "relative dimming" dimming telegram is sent out on the 4 -bit communication object.

Figure 1.11. "Dimming" window
"Duration of long operation=entry $\times 0.1 \mathrm{~s}$ " (3...30)
The parameter is used to define the time which a long operation is recognized.
Options: $3 . .30$
"Manner of dimming"
You can select between the two dimming manner "start-stop dimming" and "step-wise dimming" via this parameter.

Options: Start-stop dimming
Step-wise dimming
With the "step-wise dimming" option, the dimming manner is the step-wise dimming. You can set a telegram with the "brighter" or "darker" information whether is sent out cyclically by a long operation And when the rocker switch is released, you can also set the telegram with the "dimming stop" in formation whether is sent out.

"Step size for dimming"

The parameter is only visible if the "manner of dimming" parameter is set to "step-wise dimming". Here you can specify by how much brighter or darker dimming should occur. The sent out value always relates to the current brightness value. For example, a dimming actuator is currently dimmed to a brightness value of 70%. By operation of the rocker switch, a dimming command "dim by $\mathbf{2 5 \%}(1 / \mathbf{4})$ brighter" is sent out. The dimming actuator will adjust its brig htness value to 95% immediately after receiving the dimming command

$$
\text { Options: } \quad 1 / 1,1 / 2,1 / 4,1 / 32,1 / 64
$$

"Dimming functionality"

The parameter is only visible if the "manner of dimming" parameter is set to "step-wise dimming". It is used to define the functionality of the dimming. You can set whether a switching telegram will be sent out for a short operation of the rocker switch and a dimming telegram will be sent out for a long operation or whether a long operation will cause a switching telegram to be sent out and a short operation will cause a dimming telegram to be sent out.

Options: Short operation dimming, long operation switching Short operation switching, long operation dimming

"Working mode of the push button for switching"

The parameter is used to determine whether operation of the left or right side of the rocker switch will send out an ON or an OFF telegram or a toggle telegram/

Options: Left on, right off
Left off, right on
Alternating on/off
If the option alternating on/off is selected, you ca n switch between switching on and switching off for every operation that triggers a switching telegram. For example, if an ON telegram was last sent out, then a renewed operation of the rocker switch will trigger an OFF telegram. When the rocker switch is operated again, an ON telegram is sent out, etc. The rocker switch thus always remembers the last state and then switches over to the other value.

"Working mode of the push button for dimming"

The parameter is used to determine whether operation of the left or right side of the rocker switch will sent out a dim brighter or a dim darker telegram. A dimming telegram that is triggered by operation of the rocker switch will be sent out on the 4 -bit communication object "relative dimming".

Options: Left darker, right bright
Left bright, right darker

A R LIGHT

"Dimming stop telegram"

The parameter is only visible if the "dimming functionality" parameter is set to "short operation switching, long operation dimming". It is used to determine whether the release of the rocker switch will trigger the "dimming stop" command or not.

Options: Dimming stop is send
Dimming stop is not send
With the "dimming stop is send" option, when the rocker switch is released, the telegram with the "dimming stop" information is sent out on the 4-bit communication object "relative dimming".
"Cyclical sending of dimming telegrams"
The parameter is only visible if the "dimming functionality" parameter is set to "short operation switching, long operation dimming". It is used to determine the telegram with the "brighter" or "darker" information whether is sent out cyclically by a durative long operation.

Options: Deactivated
Activated
With the "activated" option, when triggered a durative long operation, the telegram with the "brighter" or "darker" in formation is sent out cyclically on the 4 -bit communication object "relative dimming".
"Duration of the telegram repetitions=entry $\times 0.1 \mathrm{~s}(3 . . .30)$
The parameter is only visible if the "cyclical sending of dimming telegrams" parameter is set to "activated". It is used to set the interval time between two telegrams that are sent cyclically.

Options: 3 ... 30

"Switching", 1bit

According to the parameter setting, the object is used to send out an ON telegram or an OFF telegram via an operation of the left or the right side of the rocker switch.

"Relative dimming", 4bit

According to the parameter setting, the object is used to send out a dim brighter or a dim darker telegram, or a dim stop telegram via an operation of the left or the right side of the rocker switch.

1.3.3. "BLIND"

Parameter window "blind" can be shown in fig. 1.12. With the "blind" application, an operation of the right or left side of the rocker switch sends out a blind movement command or a slats adjustment command. A short operation always triggers a travel command and a long operation always triggers a slats adjustment command. You can specify whether the blind control occurs via two 1-bit or two 1-byte communication objects "travel" and "adjust".

Device: 11.3 KN9551-600 Push-button 4-gang			
General	Choice of function	Blind	
Button pairl			
Button psir2	Operation function	lang=travel/shortzstop/adjust	-
Button pair3			
Button pair4	Duration of long operation=entry-0.1s	10	8
LED1	(3.30)		
$L^{\text {LEO2 }}$	Object type	1 bit	-
LED4	Working made of upper/lower push	Up/Down	-
LEDS	buttons		
LED6			
${ }^{\text {LED7 }}$			
LED8			

Figure 1.12. "Blind" window

"Operation function"

The parameter is used to define the operation mode of long and short option.
Options: long=travel/short=stop/adjust short=travel/long=stop/adjust
"Duration of long operation=entry×0.1s (3...30)"
The parameter is used to define the time which a long operation is recognized. Options: 3 ... 30

"Object type"

This parameter is used to define the type of the communication objects "travel" and "adjust".
Options: 1bit

1byte

"Working mode of the push button"

The parameter is used to determine whether operation of the left or right side of the rocker switch will send out commands for movement and adjustment. For a short operation of the rocker switch, a moving up or down telegram is sent out on a 1-bit communication object. For a long operation of the rocker switch, a slat adjustment up or down telegram is sent out on a 1-bit communication object.

Options: Left down, right up
Left up, right down

"Value for position down(\%)"/"value for position up(\%)"

This parameter can only be set if "1 byte" has been set as object type, which can be used to set the position (percent values) that a connected blind shall be lowered or raised to

$$
\text { Options: } \quad 0 . . .100
$$

The value 0\% means travel up completely, the value 100% means travel down completely

"Value for stats position down(\%)"/"value for stats position up(\%)"

This parameter can only be set if "1 byte" has been set as object type, which can be used to set the position (percent values) that a connected blind slat shall be opened or closed to.

$$
\text { Options: } \quad 0 . . .100
$$

The value 0\% means slat opened completely, the value 100% means closed completely.
"Travel", 1bit
This object is visible if the parameter "object type" is set to "1bit", it is used to send out a shutter movement command (UP or DOWN) on the bus via a short operation of the left or the right side of the rocker switch.

$$
\begin{array}{ll}
\text { Telegram value } & \text { "0" UP } \\
& \text { "1" DOWN }
\end{array}
$$

"Adjust", 1bit

This object is visible if the parameter "object type" is set to "1bit", it is used to send out a lamella adjustment command (UP or DOWN) on the bus via a long operation of the left or the right side of the rocker switch.

$$
\begin{array}{ll}
\text { Telegram value } & \text { "0" lamella UP } \\
& \text { "1" lamella DOWN }
\end{array}
$$

"Position", 1byte

This object is visible if the parameter "object type" is set to "1byte", it is used to send out a shutter movement command (UP or DOWN, percent values) on the bus via a short operation of the left or the right side of the rocker switch.

$$
\begin{array}{ll}
\text { Telegram 0...100, } & 0 \text { travel up completely } \\
& 100 \text { travel down completely. }
\end{array}
$$

"Stats position", 1byte

This object is visible if the parameter "object type" is set to " 1 byte", it is used to send out a stats adjustment command (UP or DOWN, percent values) on the bus via a long operation of the left or the right side of the rocker switch.

$$
\begin{array}{ll}
\text { Telegram 0...100, } & 0 \text { stat opened completely } \\
& 100 \text { stat closed completely. }
\end{array}
$$

1.3.3. "VALUE SENDER"

Parameter window "value sender" can be shown in fig. 1.13. With the application, a telegram with the predefined value is sent out for an operation of the right or the left side of the rocker switch.
Figure 1.13. "Value sender" window

"Object type"

The parameter is used to define the data type that is sent when the rocker switch is actuated for every operation. The data type specified the bit size of the communication objects and the value range.

A RLIGHT

Options: 1bit
1byte 0... 100%
1byte 1... 255
2byte signed -32768... 32767
2byte unsigned 0... 65535
4byte signed -2147483648... 2147483647
4byte unsigned 0... 4294967295

"Working mode of the push button"

This parameter is used to determine whether the right or the left side of the rocker switch sends out the "value 1 " or "value 2 ".

Options: Left value 1, right value 2
Left value 2 , right value 1
Alternating value $1 /$ value 2
If the option alternating value $1 /$ value 2 is selected, switching is always between value 1 and value2. That means, for example, if value 1 was last sent out, then a renewed operation of the rocker switch will trigger value 2 . When the rocker switch is operated again, value1 is sent out, etc. The rocker switch thus always remembers the last state and then switches over to the other value.

"Value1"/"value2"

The parameters are used to specify value1 and value 2 which are sent out for an operation of the right or left side of the rocker switch. The values range is dependent on the selected data type.

"Value switching", 1bit/1byte/2byte/4byte

The type of the object is set in the parameter "object type", the object is used to send out a telegram with the predefined value for an operation of the right or the left side of the rocker switch. The predefined value and data types can be freely selected in the parameters.

1.3.5. "VALUE DIMMING SENSOR"

Parameter window "value dimming sensor" can be shown in fig. 1.14. With the application, each operation of the right or left side of the rocker switch will increase or reduce a 1 -byte value (percent or value from 0 to 127) via sending a 1-byte telegram. The 1-byte value can be connected with 1-byte brightness value objects from dimming actuators. Thus a dimming actuator can be dimmed brighter or darker.

Devices - .o. KN9550-kXX Push button 4 gang			
General	Choice of function	Value dimming sensor	-
Button pair1			
Button pair2	Object type	1 byte 0.100\%	-
Button pair			
Button pair 4	Step size(0...50\%)	0	8
LEDI			
LED2	Working mode of uppertlower push	Brighter/Darker	\checkmark
LED3	buttons		
LED4			
LEDG			
LEDS			
$1 \mathrm{cm7}$			

Figure 1.14. "Value dimming sensor" window

"Object type"

With the setting "1-byte $0 . . . \mathbf{1 0 0 \%}$ ", the momentary value is increased or reduced by a percent amount for every operation. With the setting "1-byte $\mathbf{0 . . . 2 5 5 "}$ ", the momentary value is increased or reduced by an absolute value for every operation.

"Step size"

The parameter is used to determine how large the percent value or the absolute value will be increased or reduced for every operation. For example, the current value is 40%, for a step size of 10%, the current value is increased from 40% to 50% for an operation (for an increase).

"Working mode of the push button as value dimming"

The parameter is used to determine whether the operation of the left or right side of the rocker switch increased or lowers the value that is sent out from the 1-byte communication object "value".

Options: Left bright, right darker

Left darker, right bright

"Value", 1byte

The type of the object value is set in the parameter "object type", the object is used to send out a telegram with the predefined value for an operation of the right or the left side of the rocker switch. The predefined value is set in the parameter "step size".
Telegram value
0... 50
Or
0... 127

1.3.6. "STEP-TYPE SWITCH"

Parameter window "step-type switch" can be shown in fig. 1.15. With the application, the user can trigger different switching processed with each new operation of the left or right side of the rocker switch. Up to four switching levels can be activated. Depending on the setting, a stage higher or a stage lower can thus be switched to.

Device: -... KN9550-M00 Push-button 4-gong			
General	Choice of function	Step-type switch	-
Button pair1			
Button pair 2	Number of objects	1	-
Button pair			
Button pasir4	Evaluation period=entry-0.18(10.50)	30	通
LED1	Working mode of upper/lower puth	Up/Down	-
LED3	buttors		
LED4	Sending of objects	for change of value	-
LED6			
LEDS	Object values	normal	-
LEDP	Bit pattem of the object values	x of n	-

Figure 1.15. "Step-type switch" window

"Number of objects"

The parameter is used to specify the number of the levels. Up to four levels can be switched. For every level, its own 1 bit communication object is available. Options: 1... 4

"Evaluation period=entry×0.1s" (10...50)"

The parameter is used to set the evaluation period, i.e. the period of time in which complete the first object to the final object sending out via a multiple operation, up to four objects can be sent.
Options:
10... 50

"Working mode of the push button"

The parameter is used to specify whether an operation of the left or right side of the rocker switch switches one stage up or lower.

Options: Left up, right down Left down, right up
The three objects as an example to illustrate the working mode, as follows: (Send normally object values, bit pattern of the object values is x of n)

| Operations | Binary code | Objects | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Stage3 | Stage2 | Stage1 | |
| 0 | 000 | Off | Off | Off |
| 1 | 001 | Off | Off | On |
| 2 (current) | 011 | Off | On | On |
| 3 | 111 | On | On | On |
| 4 | 111 | On | On | On |
| $\ldots . . .$. | $\ldots . .$. | $\ldots . .$. | $\ldots .$. | \ldots |

With the setting "left up, right down", the current operation is 2 . If an operation of the left rocker switch side switches one stage up, the next operation will be 3. If an operation of the right rocker switch side switches one stage lower, the next operation will be 1 .
With the setting "left down, right up", the current operation is 2 . If an operation of the left rocker switch side switches one stage lower, the next operation will be 1. If an operation of the right rocker switch side switches one stage up, the next operation will be 3 .

"Sending of objects"

The parameter is used to specify whether the object values for every rocker switch operation are sent out or only if the object values have changed since the last sending out.

$$
\begin{array}{ll}
\text { Options: } & \text { For operation } \\
& \text { For change of value }
\end{array}
$$

Above form as an example to illustrate the difference between two options: With the setting "for operation", the three object values are sent out for every operation. Such as the above table from the 1st to the 2nd operation, stage 1 object sends the value of 1 , for a while stage 2 object will send the value of 1 , finally, stage 3 object will send the value of 0 . The total time that the three objects are sent out can be set in the parameter "Evaluation period= entry $\times 0.1 \mathrm{~s}$ ". With the setting "for change of value", only the object that values have changed compared with the last values is sent out for every operation. Such as the above table from the 1st to the 2nd operation, only stage 2 object value has changed, so only stage 2 object sends the value of 1 .
"Object values"
The parameter is used to define whether the object values are sent out "invert" or "normal" via their associated 1-bit communication objects.

A R LIG H T

Options: Normal
 Inverse

With the setting "normal", all 1-bit communication objects of the individual levels sent out their values normal.
With the setting "inverse", all 1-bit communication objects of the individual levels sent out their values inverted.
The three objects as an example to illustrate the difference between two options, their object values is just opposite. As follows:

Operations	Normal				Inverse			
	Binary code	Objects			Binary code	Objects		
		Stage3	Stage2	Stage 1		Stage3	Stage2	Stage 1
0	000	Off	Off	Off	111	On	On	On
1	001	Off	Off	On	110	On	On	Off
2	011	Off	On	On	100	On	Off	Off
3	111	On	On	On	000	Off	Off	Off
4	111	On	On	On	000	Off	Off	Off
......

"Bit pattern of object values'

The parameter is used to determine the way of the bit pattern of object values.
Options: x of n
1 of n
The three objects as an example to illustrate their difference, as follows. (Send normally object values, $n=3$):

Operations	X of n				1 of n			
	Binary code	Objects			Binary code	Objects		
		Stage3	Stage2	Stage 1		Stage3	Stage2	Stage 1
0	000	Off	Off	Off	000	Off	Off	Off
1	001	Off	Off	On	001	Off	Off	On
2	011	Off	On	On	010	Off	On	Off
3	111	On	On	On	100	On	Off	Off
4	111	On	On	On	100	On	Off	Off
......

With the setting " \mathbf{x} of \mathbf{n} ", the binary coding sequence of bit pattern of object values is 000-001-011-111. So the object values have changed step by step.
With the setting "1 of \mathbf{n} ", the binary coding sequence of bit pattern of object values is 000-001-010-100. Only one of the object values is 1 for every operation, and the object values have changed with certain regularity.
"Switching stage1" to "switching stage 4", 1bit
The number of these objects (max.4) is set in the parameter "Number of objects". The objects send out the values or one of the values for every new operation of the left or the right side of the rocker switch.

1.4. "LED FUNCTION"

Parameter window "LED function" can be shown in fig. 1.16. Each rocker switch has a LED which can be used for status display or for the function display. The LED can light up in different colors. The LED can al so flash for alarm display. LED indication and the button operation are independent of each other. Their parameters and communication objects available can be set separately.

Figure 1.16. "LED function" window

"LED function enable"

It is used to set whether LED function is enabled.
Options: None
Object
Button Activation

If the option "object" is selected, the object "Status" will be enabled, LED is controlled by the object. If the option "button activation", then LED is controlled is by button option.

"Color for off, color for on"

This parameter define the color when "Status" object receive " 0 " and " 1 "

Options: Off
 Red

Green
This parameter define the color when "Status" object receive " 0 " and " 1 ".
"Color for pressing", "color for releasing"
This parameter define the color when press and release the button.

Options: Off

Red
Green

"Alarm function"

This parameter is used to define whether the alarm function is enabled for the LED.

Options: Deactivated

 ActiveIf the option active is selected, the alarm function w ill be switched active, and the object "alarm" will be enabled. The LED will flash if the object receives an ON telegram. If the object receives an OFF telegram, the LED will no longer flash.
Note: In the case of LED no indication, the LED flashes red when the alarm is enabled. If the LED takes on one color, it will flashes in the same color. If the LED status is turned into "off", the flashing color will change back to red again.

"Status", 1bit/1byte

If the "LED function enable" parameter is set to "active", the object "status" is enabled. The object status can either be set to the size "1" bit or "1 byte". 1-byte value range 0... 255.

"Alarm", 1bit

If the "alarm function" parameter is set to "active", the object "alarm" will be enabled. The LED will flash if the object receives an ON telegram. If the object receives an OFF telegram, the LED will no longer flash.

2. COMMUNICATION OBJECT DESCRIPTION

Communication object is the media of devices on the bus to communicate with other devices, that is, just communication object can communicate with the BUS. All buttons of the push button have the same communication objects. The following description is the detailed introduction of the role of each communication object with Button 1 as an example.
Note: "C" in "Flag" column in the below table means that the object has a normal link to the bus; "W" means the object value can be modified via the bus; "R" means the value of the object can be read via the bus; "T" means that a telegram is transmitted when the object value has been modified; "U" means that value response telegrams are interpreted as a write command, the value of the object is updated.
2.1. INDEPENDENT WORKING MODE COMMUNICATION OBJECTS
2.1.1. "DISABLE FUNCTION" COMMUNICATION OBJECT

Numb... $~+~$	Name	Object Function	Description	Group Address...	Length	...	R	w	T	u	Data Type	Priori.
$\stackrel{\rightharpoonup}{+1} 0$	Button1, function disable	Button function disable			1 bit	c	-	w	-	-	switch	Low

Number	Function	Object Name	Data	Flags
$0,6,12,18,24,30,36,42$	Disable function	Disable function	1 bit	C, W

This object is used to disable the function of a button, when receives value " 1 ", function of the button is disabled, when receives value " 0 ", function of the button is enabled. The function of the button is enabled when powered on by default.

Table 1. "Disable function" Communication Object Table
2.1.2. "SWITCHING" COMMUNICATION OBJECT

2.1.3. "DIMMING" COMMUNICATION OBJECT

$\underline{-1} 1$	Button1, dimming	Switching		1 bit	C	-	W	T	-	switch	Low
$\left\lvert\, \begin{aligned} & \text { H\| }\end{aligned}\right.$	Button1, dimming	Relative dimming	Switching" Commun	4 bit	Figure 2.1.3. "Switching" Communication Object					dimming control	Low
	Number	Function	Object Name								Flags
	1, 7, 13, 19, 25, 31, 37, 43	switching	Button X , dimming								C, W, T
This object is used for short operation switching.											
	$2,8,14,20,26,32,38,44$	Relative dimming	Button X, dimming								C, T
This object is used for long operation relative dimming.											
Table 3. "Dimming" Communication Object Table											

2.1.4. "BLIND" COMMUNICATION OBJECT

[^0]Table 4. "Blind" Communication Object Table
2.1.5. "VALUE SENDER" COMMUNICATION OBJECT

	Button1, value sender	Switching(rising edge)	1 bit	C	-	-	T	-	switch	Low
$\underline{+12}$	Button1, value sender	Switching(falling edge)	1 bit	C	-	-	T	-	switch	Low

Figure 2.1.5. "Value sender rocker switch total" Communication Object

Number	Function	Object Name	Data	Flags
1, 7, 13, 19, 25, 31, 37, 43	Pressing	Button X, value sender	1bit/1 byte/2byte/4byte	C, T
This object is used to send the value when pressing the button. The value range is determined by data type, different data types have different value ranges. Data type is determined by parameter "object type"				

$2,8,14,20,26,32,38,44$	Release	Button X, value sender	1bit/1 byte/2byte/4byte	C, T

This object is used to send the value when releasing the button. The value range is determined by data type, different data types have different value ranges. Data type is determined by parameter "object type"
2.1.6. "SCENE" COMMUNICATION OBJECT

$\underline{\boldsymbol{t}} 11$ Button1, scene	Number of		1 Byte	C	-	-	T	-	scene number	Low
Figure 2.1.6. "Scene" Communication Object										
Number	Function	Object Name			Data				Fla	
1, 7, 13, 19, 25, 31, 37, 43	Scene number	Button1, scene			1 byte				C,	
This object is used to control a scene. Sending a 8bit command via this object can recall or save a scene. Detailed description of the 8bit command is as follows. A 8bit command is (binary encoding): FXNNNNNN F: " 0 " is to recall a scene, " 1 " is to save a scene X : not used NNNNNN: scene number (0...63) Parameter setting scene number is $1 \ldots 64$, actually the corresponding scene telegrams sent by object "Number of light scene" is $0 . . .63$. For example: the scene number in parameter setting is 1 , then the scene telegram sent by object "Number of light scene" is 0 .										

2.1.7. "STEP-TYPE SWITCH" COMMUNICATION OBJECT

$\underline{\\|}{ }^{\text {\| }} 1$	Button1, step-typ	Switching stag		1 bit	C	-	-	T	-	switch		Low
$\stackrel{+}{+} \mid$	Button1,step-typ	Switching stag		1 bit	c	-	-	T	-	switch		Low
$\stackrel{\\|+1}{ }$	Button1,step-typ	Switching stag		1 bit	C	-	-	T	-	switch		Low
$\stackrel{+14}{ }$	Button1,step-typ	Switching stag		1 bit	C	-	-	T	-	switch		Low
$\stackrel{+}{\boldsymbol{*}} \mid 5$	Button1,step-typ	Switching stag		1 bit	c	-	-	T	-	switch		Low
Figure 2.1.7. "Step-type Switch" Communication Object												
Number		Function	Object Name		Data					Flags		
	$\begin{aligned} & 3 \ldots .17,19 \ldots 23,25 \ldots 29 . \\ & 37 . . .41,43 \ldots 45 \\ & \hline \end{aligned}$	Switching stage 1...5	Button X, step-type		1 bit					C. T		

These 5 objects can send maximum 5 data once to the Bus.
Table 7. "Step-type switch" Communication Object Table
2.1.8. "SHORT-LONG OPERATION" COMMUNICATION OBJECT

$\underline{\\|}{ }^{+1}$	Button1, short-long operation	Value for short operation	1 bit	C	-	-	T	-	switch	Low
$\stackrel{+1}{+1}$	Button1, short-long operation	Value for long operation	1 bit	C	-	-	T	-	switch	Low

Figure 2.1.5. "Value sender rocker switch total" Communication Object

Number	Function	Object Name	Data	Flags
$1,7,13,19,25,31,37,43$	Value for short operation	Button X, Button1, short-long operation	1bit/1 byte/2byte/4byte	C, T

This object is used to send object value of short operation. The value range is determined by data type, different data types have different value ranges. Data type is determined by parameter "object type".
$2,8,14,20,26,32,38,44$
Value for long operation
Button X, Button1, short-long operation
1bit/1 byte/2byte/4byte
C. T

This object is used to send object value of long operation. The value range is determined by data type, different data types have different value ranges. Data type is determined by parameter object type

> Table 8. "Short-long operation" Communication Object

2.1.9. "RTC" COMMUNICATION OBJECT

2.1.10. "MULTIPLE OPERATION" COMMUNICATION OBJECT

These 5 objects can send maximum 5 data once to the Bus. The value range is determined by data type, different data types have different value ranges. Data type is determined by parameter object type Table 10. "Multiple operation" Communication Object Table

2.2. LINKED WORKING MODE COMMUNICATION OBJECT

2.2.1. "DISABLE FUNCTION" COMMUNICATION OBJECT

	Numb... 4	Name	Object Function	Description	Group Address...	Length	.		R	W		T	U	Data Type		Priori...
- ${ }^{+1}$		Button pair1, function disable	Button function disable			1 bit	C		-	w			-	switch		Low
	Figure 2.2.1. "Disable function" Communication Object															
Number			Function	Object Name		Data							Flags			
		0, 12, 24, 36	Button function disable	Button pair X , function disable		1 bit									C, w	

This object is used to disable button function, when receives " 1 ", function of the button is disabled, when receives " 0 ", function of the button is enabled. Function of the button is enabled when powered on by default.
Table 11. "Disable function" Communication Object Table
2.2.2. "SWITCHING" COMMUNICATION OBJECT

W¢ 1	Button pa	Switching		1 bit	c	-	w	T	-	switch	Low
Figure 2.2.2. "Disable function" Communication Object											
Number		Function	Object Name		Data					Flags	
	1, 13, 25, 37	switching	Button pair X , switching			1 bit					C, W, T
When the button is operated, the object will send telegram "1" to trigger switch ON , and telegram "0" to trigger switch OFF.											

Table 12. "Switching" Communication Object Table

2.2.3. "DIMMING" COMMUNICATION OBJECT

2.2.4. "BLIND" COMMUNICATION OBJECT

[^1]2.2.5. "VALUE SENDER" COMMUNICATION OBJECT
Figure 2.2.5. "value sender rocker switch" Communication Object

Number	Function	Object Name	Data	Flags
1, $13,25,37$	Value switching	Button pair X, value switching	$1 \mathrm{bit} / 1$ byte/2byte/4byte C,T	C, T

This object is used to send designated value to the Bus. The value range is determined by data type, different data types have different value ranges. Data type is determined by parameter "object type".
Table 15. "Value sender" Communication Object Table
2.2.6. "VALUE DIMMING" COMMUNICATION OBJECT
$\longmapsto \overrightarrow{+} \mid 1$
Button pair1,value dimming
Value
1 Byte C - T
T - counter pulses (0..25! Low
Figure 2.2.6. "value dimming" Communication Object

Number	Function	Object Name	Data	Flags
1, 13, 25, 37	Value	Button pair X , value dimming	1byte	C, T
This object is used to send designated value of absolute dimming to the Bus				

Table 16. "Value dimming" Communication Object Table

2.2.7. "STEP-TYPE SWITCH" COMMUNICATION OBJECT

$\underline{-1} 1$		Button pair1, ste	e-type switch	Switching stage 1		1 bit	C	-	-	T	-	switch		Low
		Button pair1,ste	p-type switch	Switching stage 2		1 bit	C	-	-	T	-	switch		Low
- $\overrightarrow{\mid c}$		Button pair1,ste	p-type switch	Switching stage 3		1 bit	c	-	-	T	-	switch		Low
- ${ }^{+1} 4$		Button pair1,ste	p-type switch	Switching stage 4		1 bit	c	-	-	T	-	switch		Low
$\stackrel{\rightharpoonup}{+1} 5$		Button pair1,ste	p-type switch	Switching stage 5		1 bit	C	-	-	T	-	switch		Low
Figure 2.2.7. "Step-type Switch" Communication Object														
Number				Function	Object Name		Data					Flags		
	1...5, 13...17,	.17, 25...29, 37...41		Switching stage 1... 5	Button pair X, step-type		1 bit					C. T		
These 5 objects can send maximum 5 data once to the Bus.														

2.3. "LED FUNCTION" COMMUNICATION OBJECT

Table 18. "LED function" Communication Object Table

[^0]: This object is used to stop the movement/control slats adjustment of the blind, when telegram " 1 " is sent, the slats will adjust down; when telegram " 0 " is sent, the slats will adjust up.

[^1]: This object is used to stop the movement/control slats adjustment of the blind, when telegram " 1 " is sent, the slats will adjust down; when telegram "0" is sent, the slats will adjust up.
 Table 13. "Blind" Communication Object Table

